If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-11x-20=0
a = 12; b = -11; c = -20;
Δ = b2-4ac
Δ = -112-4·12·(-20)
Δ = 1081
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{1081}}{2*12}=\frac{11-\sqrt{1081}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{1081}}{2*12}=\frac{11+\sqrt{1081}}{24} $
| y=8(.85)^3 | | 2x+17=135 | | 5x+6=2x+45+60 | | 20/2x-6=x+6/36 | | 6(x-1)-4+11=x-1+x | | 2w^2-2w-6=0 | | 2(w^2-w-3)=0 | | 36+n+50=180. | | y=575(.4)^3 | | 44=3x+17 | | 60+118+60+x=360. | | 8x=-60 | | 2(x-3)+7-3x=11 | | 5-4m=9 | | 8x-(6x=3)=3x-15 | | w(2w+1)=((2w+1)+w)+5 | | 2x-141+7x=48 | | -9x+6=7x-4 | | 6x-9=6x-8-1 | | 4(y-7)=32 | | 13-4y=3-2y | | 4x3(3x-1)+12=15(x+9) | | 7x−53=2x−8 | | 2(0.333333333333333x+4)-1=1.333333333333333x-3+x | | -5b+8=-b+2 | | 2x+3x-1=-5 | | 2x+134=436 | | 21=6-a-4a | | 2^x+2=2^3x | | 70-4x+18x-4=180 | | (x-4)(x+2)=x2-7x+17 | | 84-19y=-7(60+y |